X Close
Untitled Document
 
I recently came across this journal and very impressed with the quality of research articles and information available o.

Peter Nirmalraj
Research Scientist
Read more...  
Optics '11
Thermoelectricity: From Atoms to Systems
Nano Suspensions India 2012
International conference on Recent Advance in Physics for Interdisciplinary Developments(RAPID-2014
The Fourth International Meeting on Dielectric Materials
More events...
Untitled Document
 
   News
Color-Changing Glass
Thu, 09 Mar 2017

New nanophotonics research could expand the color palette for companies in the fast-growing market for glass windows that change color at the flick of an electric switch. A team of researchers has used an inexpensive hydrocarbon molecule to create low-voltage, multicolor, electrochromic glass.

Rice University`s latest nanophotonics research could expand the color palette for companies in the fast-growing market for glass windows that change color at the flick of an electric switch.

In a new paper in the American Chemical Society journal ACS Nano, researchers from the laboratory of Rice plasmonics pioneer Naomi Halas report using a readily available, inexpensive hydrocarbon molecule called perylene to create glass that can turn two different colors at low voltages.

"When we put charges on the molecules or remove charges from them, they go from clear to a vivid color," said Halas, director of the Laboratory for Nanophotonics (LANP), lead scientist on the new study and the director of Rice`s Smalley-Curl Institute. "We sandwiched these molecules between glass, and we`re able to make something that looks like a window, but the window changes to different types of color depending on how we apply a very low voltage."

Adam Lauchner, an applied physics graduate student at Rice and co-lead author of the study, said LANP`s color-changing glass has polarity-dependent colors, which means that a positive voltage produces one color and a negative voltage produces a different color.

"That`s pretty novel," Lauchner said. "Most color-changing glass has just one color, and the multicolor varieties we`re aware of require significant voltage."

Glass that changes color with an applied voltage is known as "electrochromic," and there`s a growing demand for the light- and heat-blocking properties of such glass. The projected annual market for electrochromic glass in 2020 has been estimated at more $2.5 billion.

Lauchner said the glass project took almost two years to complete, and he credited co-lead author Grant Stec, a Rice undergraduate researcher, with designing the perylene-containing nonwater-based conductive gel that`s sandwiched between glass layers.

"Perylene is part of a family of molecules known as polycyclic aromatic hydrocarbons," Stec said. "They`re a fairly common byproduct of the petrochemical industry, and for the most part they are low-value byproducts, which means they`re inexpensive."

There are dozens of polycyclic aromatic hydrocarbons (PAHs), but each contains rings of carbon atoms that are decorated with hydrogen atoms. In many PAHs, carbon rings have six sides, just like the rings in graphene, the much-celebrated subject of the 2010 Nobel Prize in physics.

"This is a really cool application of what started as fundamental science in plasmonics," Lauchner said.

A plasmon is wave of energy, a rhythmic sloshing in the sea of electrons that constantly flow across the surface of conductive nanoparticles. Depending upon the frequency of a plasmon`s sloshing, it can interact with and harvest the energy from passing light. In dozens of studies over the past two decades, Halas, Rice physicist Peter Nordlander and colleagues have explored both the basic physics of plasmons and potential applications as diverse as cancer treatment, solar-energy collection, electronic displays and optical computing.

The quintessential plasmonic nanoparticle is metallic, often made of gold or silver, and precisely shaped. For example, gold nanoshells, which Halas invented at Rice in the 1990s, consist of a nonconducting core that`s covered by a thin shell of gold.

"Our group studies many kinds of metallic nanoparticles, but graphene is also conductive, and we`ve explored its plasmonic properties for several years," Halas said.

She noted that large sheets of atomically thin graphene have been found to support plasmons, but they emit infrared light that`s invisible to the human eye.

"Studies have shown that if you make graphene smaller and smaller, as you go down to nanoribbons, nanodots and these little things called nanoislands, you can actually get graphene`s plasmon closer and closer to the edge of the visible regime," Lauchner said.

In 2013, then-Rice physicist Alejandro Manjavacas, a postdoctoral researcher in Nordlander`s lab, showed that the smallest versions of graphene -- PAHs with just a few carbon rings -- should produce visible plasmons. Moreover, Manjavacas calculated the exact colors that would be emitted by different types of PAHs.

"One of the most interesting things was that unlike plasmons in metals, the plasmons in these PAH molecules were very sensitive to charge, which suggested that a very small electrical charge would produce dramatic colors,"

Courtesy: ScienceDaily

   
Other News
Water forms `Spine of Hydration` around DNA
Mass-Producible Quantum Computers
Nanoscale Examination of a Living Cell Membrane
Insulating Nanomagnets Driven by Spin Torque
Water is surprisingly ordered on the nanoscale
Math, Biology and Nanotechnology
Energy Decay in Graphene Resonators
First flat lens for immersion microscopy
Oddball Enzyme to Build new Biomaterials out of DNA
Self-healing Battery Anodes
Nano Fiber feels forces, hears sounds
First `Nanotherapeutics` Drug Delivered to a Tumor
Precision Control using Magnetic Molecules
Anticancer Nanomaterials
New Computer Chips
Stretchable Hologram
Beautiful, Consistent Carbon Belts
Nanoscale Imaging
Subatomic Scale
Wood filter
Slingshot
`Hot` electrons
More Wfficient Catalytic Material Developed
New material changes to the environment
Record Resolution at a nanometer length scale
Exotic nanomaterials
Nanoparticles explaining risks to heart
Nanodiamond-enhanced MRI
Nano-notch
Single-molecule diode created
A novel form of iron for fortification of foods
WALK-IN-INTERVIEWs
Bonding Chips using Inkjet Printers
Nanoparticles helps Melanoma Treatment
Imaging at the Speed of Light
Reusable Sponge that Soaks up Oil
Molecular `Leaf`
Optical Metamaterial
Most Complex nanoparticles Designed
Low-Cost Diagnostic Systems
Ultralight Web of Silk Nano Fibers
shape-Shifting Molecular Robots
Magnetic `Persuasion` in Neighboring Metals
Anti-Fogging Water-Repellent Nanotextures
Portable Nanofiber
Resilient Flight Computers
Triboelectric nanogenerators
Nano `sandwich`
Computing with Biochemical Circuits made Easy
  Untitled Document
 
     
  Untitled Document
 
 
Untitled Document
  Follow us On  Follow us on FacebookFollow us on Twitter  
© 2010 Nano Digest. All Rights Reserved.   - Rify Hosting -