X Close
Untitled Document
 
I) MSc. Organic Chemistry ii) Ph.D Chemistry Research area : Syntheis of Conducting polymer nanoparticls and transiti.

Dr.Vasant Chabukswar
Associate Professor , Nowrosjee Wadia College, Chemistry Department Pune-411001,India
Read more...  
Texas Instruments veteran Buss to lead forum on the future of electronics
The Fourth International Meeting on Dielectric Materials (IMDM’4)
Workshop on Electron Microscopy (WEM 2014)
Nanomaterials 2011
Optics '11
More events...
Untitled Document
 
   News
Molecular `Leaf`
Thu, 09 Mar 2017
An international research team has engineered a molecule that uses light or electricity to convert the greenhouse gas carbon dioxide into carbon monoxide -- a carbon-neutral fuel source -- more efficiently than any other method of "carbon reduction." The discovery is a new milestone in the quest to recycle carbon dioxide in the Earth`s atmosphere into carbon-neutral fuels and others materials.

An international team of scientists led by Liang-shi Li at Indiana University has achieved a new milestone in the quest to recycle carbon dioxide in Earth`s atmosphere into carbon-neutral fuels and others materials.

The chemists have engineered a molecule that uses light or electricity to convert the greenhouse gas carbon dioxide into carbon monoxide -- a carbon-neutral fuel source -- more efficiently than any other method of "carbon reduction."

The process is reported in the Journal of the American Chemical Society.

"If you can create an efficient enough molecule for this reaction, it will produce energy that is free and storable in the form of fuels," said Li, associate professor in the IU Bloomington College of Arts and Sciences` Department of Chemistry. "This study is a major leap in that direction."

Burning fuel -- such as carbon monoxide -- produces carbon dioxide and releases energy. Turning carbon dioxide back into fuel requires at least the same amount of energy. A major goal among scientists has been decreasing the excess energy needed.

This is exactly what Li`s molecule achieves: requiring the least amount of energy reported thus far to drive the formation of carbon monoxide. The molecule -- a nanographene-rhenium complex connected via an organic compound known as bipyridine -- triggers a highly efficient reaction that converts carbon dioxide to carbon monoxide.

The ability to efficiently and exclusively create carbon monoxide is significant due to the molecule`s versatility.

"Carbon monoxide is an important raw material in a lot of industrial processes," Li said. "It`s also a way to store energy as a carbon-neutral fuel since you`re not putting any more carbon back into the atmosphere than you already removed. You`re simply re-releasing the solar power you used to make it."

The secret to the molecule`s efficiency is nanographene -- a nanometer-scale piece of graphite, a common form of carbon (i.e. the black "lead" in pencils) -- because the material`s dark color absorbs a large amount of sunlight.

Li said that bipyridine-metal complexes have long been studied to reduce carbon dioxide to carbon monoxide with sunlight. But these molecules can use only a tiny sliver of the light in sunlight, primarily in the ultraviolet range, which is invisible to the naked eye. In contrast, the molecule developed at IU takes advantage of the light-absorbing power of nanographene to create a reaction that uses sunlight in the wavelength up to 600 nanometers -- a large portion of the visible light spectrum.

Essentially, Li said, the molecule acts as a two-part system: a nanographene "energy collector" that absorbs energy from sunlight and an atomic rhenium "engine" that produces carbon monoxide. The energy collector drives a flow of electrons to the rhenium atom, which repeatedly binds and converts the normally stable carbon dioxide to carbon monoxide.

Courtesy: ScienceDaily

   
Other News
Water forms `Spine of Hydration` around DNA
Mass-Producible Quantum Computers
Nanoscale Examination of a Living Cell Membrane
Insulating Nanomagnets Driven by Spin Torque
Water is surprisingly ordered on the nanoscale
Math, Biology and Nanotechnology
Energy Decay in Graphene Resonators
First flat lens for immersion microscopy
Oddball Enzyme to Build new Biomaterials out of DNA
Self-healing Battery Anodes
Nano Fiber feels forces, hears sounds
First `Nanotherapeutics` Drug Delivered to a Tumor
Precision Control using Magnetic Molecules
Anticancer Nanomaterials
New Computer Chips
Stretchable Hologram
Beautiful, Consistent Carbon Belts
Nanoscale Imaging
Subatomic Scale
Wood filter
Slingshot
`Hot` electrons
More Wfficient Catalytic Material Developed
New material changes to the environment
Record Resolution at a nanometer length scale
Exotic nanomaterials
Nanoparticles explaining risks to heart
Nanodiamond-enhanced MRI
Nano-notch
Single-molecule diode created
A novel form of iron for fortification of foods
WALK-IN-INTERVIEWs
Bonding Chips using Inkjet Printers
Nanoparticles helps Melanoma Treatment
Imaging at the Speed of Light
Reusable Sponge that Soaks up Oil
Color-Changing Glass
Optical Metamaterial
Most Complex nanoparticles Designed
Low-Cost Diagnostic Systems
Ultralight Web of Silk Nano Fibers
shape-Shifting Molecular Robots
Magnetic `Persuasion` in Neighboring Metals
Anti-Fogging Water-Repellent Nanotextures
Portable Nanofiber
Resilient Flight Computers
Triboelectric nanogenerators
Nano `sandwich`
Computing with Biochemical Circuits made Easy
  Untitled Document
 
     
  Untitled Document
 
 
Untitled Document
  Follow us On  Follow us on FacebookFollow us on Twitter  
© 2010 Nano Digest. All Rights Reserved.   - Rify Hosting -