X Close
Untitled Document
 
Brilliant, I personally admire the magazine and should become popular amongst all concerned in this field..

Dr G Sundararajan
Director , ARCI
Read more...  
The Fourth International Meeting on Dielectric Materials
Nanotechnology Conference 2012, Mexico
nano tech 2013 - The12th International Nanotechnology Exhibition & Conference
International Conference of Nanoscience and Nanotechnology-ICONN2013
nano tech 2013 - The12th International Nanotechnology Exhibition & Conference
More events...
Untitled Document
 
   News
shape-Shifting Molecular Robots
Fri, 03 Mar 2017
A molecular robot consisting of biomolecules, such as DNA and protein, has now been developed by a team of scientists.

A research group at Tohoku University and Japan Advanced Institute of Science and Technology has developed a molecular robot consisting of biomolecules, such as DNA and protein. The molecular robot was developed by integrating molecular machines into an artificial cell membrane. It can start and stop its shape-changing function in response to a specific DNA signal.

This is the first time that a molecular robotic system has been able to recognize signals and control its shape-changing function. What this means is that molecular robots could, in the near future, function in a way similar to living organisms.

Using sophisticated biomolecules such as DNA and proteins, living organisms perform important functions. For example, white blood cells can chase bacteria by sensing chemical signals and migrating toward the target. In the field of chemistry and synthetic biology, elemental technologies for making various molecular machines, such as sensors, processors and actuators, are created using biomolecules.

A molecular robot is an artificial molecular system that is built by integrating molecular machines. The researchers believe that realization of such a system could lead to a significant breakthrough -- a bio-inspired robot designed on a molecular basis.

The molecular robot developed by the research group is extremely small -- about one millionth of a meter -- similar in size to human cells. It consists of a molecular actuator, composed of protein, and a molecular clutch, composed of DNA. The shape of the robot`s body (artificial cell membrane) can be changed by the actuator, while the transmission of the force generated by the actuator can be controlled by the molecular clutch.

The research group demonstrated through experiments that the molecular robot could start and stop the shape-changing behavior in response to a specific DNA signal.

"With more than 20 chemicals at varying concentrations, it took us a year and a half to establish good conditions for working our molecular robots," says Associate Professor Shin-ichiro Nomura at Tohoku University`s Graduate School of Engineering, who led the study. "It was exciting to see the robot shape-changing motion through the microscope. It meant our designed DNA clutch worked perfectly, despite the complex conditions inside the robot."

The realization of a molecular robot whose components are designed at a molecular level and who can function in a small and complicated environment, such as the human body, is expected to significantly expand the possibilities of robotics engineering. The results of this study could lead to technological developments that could help solve important medical issues -- such as a treatment robot for live culturing cells and a monitoring robot for checking environmental pollution.

"The paper by Nomura and coworkers represents a major step towards the development of autonomous soft microrobots," says Dr. Friedrich Simmel, professor at the Technische Universität München. "Based on this achievement, in the future similar systems could be developed that display artificial phototaxis or chemotaxis, or similar `intelligent` behavior."

Courtesy: ScienceDaily

   
Other News
Water forms `Spine of Hydration` around DNA
Mass-Producible Quantum Computers
Nanoscale Examination of a Living Cell Membrane
Insulating Nanomagnets Driven by Spin Torque
Water is surprisingly ordered on the nanoscale
Math, Biology and Nanotechnology
Energy Decay in Graphene Resonators
First flat lens for immersion microscopy
Oddball Enzyme to Build new Biomaterials out of DNA
Self-healing Battery Anodes
Nano Fiber feels forces, hears sounds
First `Nanotherapeutics` Drug Delivered to a Tumor
Precision Control using Magnetic Molecules
Anticancer Nanomaterials
New Computer Chips
Stretchable Hologram
Beautiful, Consistent Carbon Belts
Nanoscale Imaging
Subatomic Scale
Wood filter
Slingshot
`Hot` electrons
More Wfficient Catalytic Material Developed
New material changes to the environment
Record Resolution at a nanometer length scale
Exotic nanomaterials
Nanoparticles explaining risks to heart
Nanodiamond-enhanced MRI
Nano-notch
Single-molecule diode created
A novel form of iron for fortification of foods
WALK-IN-INTERVIEWs
Bonding Chips using Inkjet Printers
Nanoparticles helps Melanoma Treatment
Imaging at the Speed of Light
Reusable Sponge that Soaks up Oil
Color-Changing Glass
Molecular `Leaf`
Optical Metamaterial
Most Complex nanoparticles Designed
Low-Cost Diagnostic Systems
Ultralight Web of Silk Nano Fibers
Magnetic `Persuasion` in Neighboring Metals
Anti-Fogging Water-Repellent Nanotextures
Portable Nanofiber
Resilient Flight Computers
Triboelectric nanogenerators
Nano `sandwich`
Computing with Biochemical Circuits made Easy
  Untitled Document
 
     
  Untitled Document
 
 
Untitled Document
  Follow us On  Follow us on FacebookFollow us on Twitter  
© 2010 Nano Digest. All Rights Reserved.   - Rify Hosting -