Ultraresolution
kinesin traces with optically trapped germanium nanospheres. Kinesins are
molecular machines that transport vesicles along microtubules inside cells.
Membrane-coated germanium nanospheres (TEM micrograph, left) improved the
spatiotemporal resolution of optical tweezers and allowed the measurement of
substeps during the normal kinesin stepping cycle. Under load, kinesins did not
detach but slipped along the microtubule, which led to the discovery of rescues
for vesicle transport. Credit: Science (2021). DOI: 10.1126/science.abd9944.
Motor
proteins generate the forces for essential mechanical processes in our body. On
a scale of nanometers—a millionth of a millimeter—motor proteins, for example,
power our muscles or transport material within our cells. Such movements,
invisible to the naked eye, can be made visible by Erik Schäffer: the professor
of Cellular Nanoscience at the University of Tübingen develops special force
microscopes, so-called optical tweezers, to measure how these molecular machines
work mechanically. His team at the Center for Plant Molecular Biology has now
improved the technology. Special probes, germanium nanospheres, enable a higher
resolution of displacements and forces that the motors generate. The results
have been published in the journal Science.
With a
size of just 60 nanometers, the motor proteins studied are truly tiny, but
essential for cellular processes. Among other things, they help to mechanically
pull apart chromosomes during cell division, or they transport small "packages,"
so-called vesicles, within cells. Dysfunctional motors, for example in nerve
cells, may lead to neurological diseases such as Alzheimer's.
To unravel
how motor proteins work, biophysicist Erik Schäffer developed ultra-precise
optical tweezers. They are based on principles already discovered by astronomer
Johannes Kepler in 1609. For their invention, the physicist Arthur Ashkin
received the Nobel Prize in 2018. The optical tweezers exploit the radiation
pressure of laser light to contactless hold tiny particles in place. Using this
tool, Schäffer has been able to demonstrate a few years ago that the motor
protein kinesin rotates while walking: with two "feet," it takes
eigth nanometer large steps making a half-turn each time—almost as if
performing a Viennese waltz.
Schäffer's
Ph.D. student Swathi Sudhakar has now refined the optical tweezers technology
further. Using germanium nanospheres, much smaller and higher-resolution
probes, one can still counteract the unimaginably tiny, five-piconewton forces
of the biological motors. This means the researchers can now measure even the
smallest and fastest movements that were so far hidden in the storm of the
jerky thermal motion inherent to small particles.
With the
new technology, the researchers could track kinesin in real time, and Sudhakar
detected another intermediate step in its locomotion, making the waltz almost
perfect. "Whether this intermediate step exists has been debated among
scientists for 20 years," Schäffer says. "We were able to measure this
directly for the first time using optical tweezers." In addition, the
nanospheres revealed a previously unknown slip mechanism of the motor. "It
is a kind of safety leash that keeps the motor on track if the load is too
high," says Schäffer. This mechanism explains the high efficiency of
vesicle transport in cells, he adds. "If we know how kinesin motors work
in detail, we can also better understand the vital cell processes that the
motors power, as well as malfunctions that can lead to disease."
Schäffer
compares the new technology with "taking a good look under the hood"
of molecular machines. He says that now, researchers can not only precisely
observe individual movements of molecular machines; they can also better
understand, for example, how proteins fold into their correct structure.
"As semiconductors, the nanospheres have additional exciting optical and
electrical properties. Therefore, they could be useful in other areas of
nanoscience and materials science, for example, for better lithium-ion batteries,"
Schäffer says.