Latest News
Iran in bid to set up nanoscience hub in Nairobi  ||   Understanding ceramic ‘mortar’ of materials may reveal ways to improve them  ||   Novel Electrode for Efficient Artificial Synthesis of Ammonia  ||   New antiviral, antibacterial surface could reduce spread of infections in hospitals  ||   Novel insight reveals topological tangle in unexpected corner of the universe  ||   Electrical fields can throw a curveball  ||   Second life for electric vehicle batteries  ||   A new law in laser physics could make eye surgery simpler  ||   Rise to valletronics based information processing and storage technology  ||   Moldable Nanomaterials and a Printing Technology  ||   RENEWABLE ENERGY ADVANCE  ||   Colour-changing, Flexible Photonic Crystals  ||   Study says Nanotechnology Can Boost Crop Yield During Crises  ||   One-Way Components  ||   Pharmaceutical: Multi-vitamin pill dissolution || Nano Tv  ||   Nanobowls serve up chemotherapy drugs to cancer cells   ||   HKBU invents nanostructure that stimulates growth of stem cells for Parkinson's disease treatment  ||   May 11, National Technology Day  ||   Nanotech's KolourOptik Platform Finalist for Best New Currency Innovation by IACA  ||   Obesity prevented in mice treated with gene-disabling nanoparticles  ||   Water-splitting module a source of perpetual energy  ||   ARCIs mechanically stable antireflective coating can increase the power conversion efficiency of solar thermal systems  ||   Indian professor enters list that includes Charles Darwin, Albert Einstein and Nelson Mandela  ||   Pressing 'pause' on nature's crystal symmetry  ||   Red light for stress  ||   Magnetic drugs' could stay at disease sites longer  ||   Nanotechnology Might Help Fight Deadly 'Cytokine Storm' of COVID-19  ||   Super-Chiral Light  ||   A material with a particular twist  ||   Cool down fast to advance quantum nanotechnology  ||   New structure for promising class of materials discovered  ||   ARCI, Hyderabad's Disinfectant trolley to fight Covid 19  ||   Two fabrics can effectively filter out aerosol particles  ||   New tool can map nanomechanical properties of materials like multi-phase alloys, composites & multi-layered coatings  ||   New 'brick' for nanotechnology  ||   INTERESTING FACTS ABOUT EARLY USAGE OF NANOTECHNOLOGY  ||   SRI INTERNATIONAL WON THE GOLD EDISON AWARD  ||   DST FOCUSES ON NANOTECHNOLOGY FOR TREATING COVID-19  ||   ‘REALISTIC’ STRENGTH OF GRAPHENE DISCOVERED  ||   YOUNG NANOSCIENTIST THINKING SMALL IN A BIG WAY  ||   CHINA AND US SALUTE THE CYBORG SOLDIER  ||   YELLOW IS THE NEW BROWN  ||   THE STATE-OF-THE-ART RESEARCH FACILITY IN THE VISAYAS REGION  ||   SYMPOSIUM ON NANOTECHNOLOGY HELD  ||   THE PIONEER OF FIBER OPTICS AND NANOTECHNOLOGY  ||   NEW INSIGHTS IN SUPERCONDUCTIVITY  ||   REDUCE ERRORS ACROSS QUANTUM COMPUTERS  ||   NANO-SPONGE WITH SURPRISING PROPERTIES  ||   ULTRATHIN ORGANIC SOLAR CELL IS BOTH EFFICIENT AND DURABLE  ||   PARK SYSTEMS ANNOUNCES NANO RESEARCH GRANT FUND  ||   CENTRIFUGAL FIELD-FLOW FRACTIONATION  ||   “VALLEY SEMICONDUCTORS”  ||  

Latest Issues

HKBU invents nanostructure that stimulates growth of stem cells for Parkinson's disease treatment

Researchers from Hong Kong Baptist University (HKBU) have invented a nanostructure that can stimulate neural stem cells to differentiate into nerve cells. They found that the transplantation of these nerve cells into rats with Parkinson's disease progressively improved their symptoms, with the new cells replacing damaged nerve cells around the transplantation site. This novel invention provides promising insights into stem cell therapies and offers hope of a new treatment for Parkinson's disease.

Using stem cells to treat Parkinson's disease

Parkinson's disease is one of the most common neurodegenerative diseases. It is commonly diagnosed in people over the age of 60. It arises from the degeneration of dopaminergic neurons (i.e., dopamine-producing nerve cells) in the substantia nigra, a complex and critical region of the brain. This results in impaired body movement and issues with the body's motor systems, with common symptoms including shaking and difficulty with walking.

While current treatments cannot cure Parkinson's disease completely, stem cell therapy is one of the most promising potential treatments. It involves cultivating stem cells for differentiation into new and healthy cells, tissues or organs which can then be transplanted to human body to replace damaged or dead cells.

Conventional stem cell culturing techniques require a large number of additional growth factors in a culture medium. The chemicals used may stimulate the growth of cancer cells and increase the risk of developing tumours after transplantation to human body. Besides, the brain‐like structures obtained from this method usually poorly resemble their counterparts in the brain. Efficiency of the conventional culturing techniques is low as the process spans more than a month, resulting in a high risk of contamination.

Reducing differentiation time and cancer risk

The pioneering nanomatrix, developed by a research team led by Professor Ken Yung Kin-lam, Professor of the Department of Biology and Dr Jeffery Huang Zhifeng, Associate Professor of the Department of Physics at HKBU, can induce the rapid and specific differentiation of neural stem cells into miniature substantia nigra-like structures (mini-SNLSs). These mini-SNLSs mainly comprise of dopaminergic neurons and they can replace the damaged or degenerated cells in the substantia nigra in the brain.

The nanomatrix consists of a silica plate coated with a nanostructure layer. Thickness of the nanomatrix is only 550 to 730 nm, yet there are trillions of nanozigzag structures on the surface which can initiate the growth of neural stem cells into mini-SNLSs without the use of chemical growth factors.

"When the neural stem cells come into physical contact with our tailor-made nanozigzag matrix in vitro, the 'physical massage' can induce the cells to differentiate rapidly into the desired dopaminergic neurons. A self-organised mini-brain-like structure can be developed in only two weeks with risk of carcinogenesis substantially reduced,” said Dr Huang.

Encouraging results in rat models

The research team carried out further laboratory tests with mini-SNLSs in a rat model. They transplanted mini-SNLSs cultured with the nanozigzag matrix into the brains of rats with Parkinson's disease that exhibited severe motor asymmetry and rotation, which are major symptoms of Parkinson's disease.

Starting from the 8th week after the transplantation, all rats showed improvements and a progressive reduction in rotation. In the 18th week, dopaminergic neurons were seen and widely spread around the primary transplantation site. In addition, no tumour‐like characteristics were detected. In contrast, rats in the control group without transplantation showed no signs of improvement.

Differentiation of other functional cells

"The results showed that these mini-brain-like structures exhibited excellent survival and functionality in the brains of rats and resulted in the early and progressive improvement of Parkinson’s disease in rats in vivo. It lays the foundation for research into stem cell therapies that may ultimately cure Parkinson's disease," said Professor Yung.

"By varying the stiffness, density and arrangement of the nanozigzags, or the shape of the matrix layer, the neural stem cells can be differentiated into different desirable functional cells. The invention has shown great potential for the treatment of other incurable diseases, such as Alzheimer's disease and certain types of cancer," Professor Yung added.

The research team led by Professor Ken Yung Kin-lam (right), Professor of the Department of Biology, and Dr Jeffery Huang Zhifeng, Associate Professor of the Department of Physics at HKBU, has developed a pioneering nanomatrix that can stimulate neural stem cells to differentiate into nerve cells and can offer help for treating Parkinson's disease.

Nano Tv

Latest issues