The
innovative QD inkjet printing technology developed by Prof. Chen Hsueh-Shih,
Department of Materials Science and Engineering, National Tsing Hua University,
Taiwan, has been reported in international journals. Courtesy: NTHU MSE, Taiwan
It's
widely known that submerging a pared apple in saltwater prevents oxidation and
browning, but did you know that saltwater can also protect fragile quantum dot
(QD) materials? A research team led by Prof. Chen Hsueh-Shih of the Department
of Materials Science & Engineering at National Tsing Hua University in
Taiwan has recently developed the world's first inkjet technique for using
saltwater to encapsulate QD materials, which not only resists water and oxygen
corrosion, but can also be uniformly printed as a flexible plastic film on a
micro LED array for use in high-resolution bendable screens for mobile phones,
glasses, etc.
In order
to create ultra-slim and bendable displays with higher resolution, higher
brightness, and a longer lifetime for use in the goggles used in augmented
reality (AR) and virtual reality (VR), and for watches and other wearable
electronic devices, Apple, Samsung, and other major panel manufacturers have
heavily invested in the development of micro LED to replace the OLED displays
currently in use.
Arranging
millions of micro-LEDs less than 100 μm in size on a substrate presents some
major difficulties. According to Chen, many manufacturers use a stamping method
to move millions of red, green, and blue micro LEDs one-by-one to the
substrate, but if just a few chips don't stick, the screen will be marred by
defective pixels.
One way of
solving this problem is to use inkjet printing to print micro pixels instead of
moving micro LEDs, which is more efficient and cost effective. However, when
the QD solution is ejected from the inkjet printer, convection occurs inside
the droplets, pushing the material to the periphery, leaving it unevenly
distributed, with a lighter color in the center and a darker color on the periphery,
similar in appearance to the so-called "coffee ring phenomenon" seen
in a drop of coffee dropped onto a light surface.
By adding
saltwater (a sodium chloride solution) to the QD solution, Chen's research team
successfully encapsulated the QDs, which formed into crystals, what Chen
describes as "grabbing hold of the quantum dots and condensing them into
uniformly distributed dots." These encapsulated QDs are also more stable
and corrosion resistant, like apples soaked in saltwater.
The team
member who came up with the idea of soaking the quantum dots in saltwater was
Dr. Ho Shih-Jung, also of the Department of Materials Science and Engineering
at National Tsing Hua University. He observed from photomicrographs that QD
material without added saltwater scatters into irregular shapes when ejected
from an inkjet printer, but by adding saltwater, they gradually shrink and
converge into uniform and beautiful crystals.
According
to Ho, adding saltwater to the QD solution also makes it possible to spray
smaller droplets, explaining that the droplet size of current QD printers is
about 30 μm to 50 μm, but by adding saltwater the size can be reduced to as
small as 3.7 μm, which is about 1/20 the diameter of a human hair, hence the
better resolution.
This
innovative research has been published in a recent issue of ACS Applied
Materials & Interfaces, and the material they have developed is currently
being patented in the United States and Taiwan.